Stability of Mixed Type Cubic and Quartic Functional Equations in Random Normed Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Mixed Type Cubic and Quartic Functional Equations in Random Normed Spaces

The stability problem of functional equations originated from a question of Ulam 1 in 1940, concerning the stability of group homomorphisms. Let G1, · be a group and let G2, ∗, d be a metric group with the metric d ·, · . Given > 0, does there exist a δ > 0, such that if a mapping h : G1 → G2 satisfies the inequality d h x · y , h x ∗ h y < δ for all x, y ∈ G1, then there exists a homomorphism ...

متن کامل

Cubic-quartic functional equations in fuzzy normed spaces

In this paper, we investigate the generalizedHyers--Ulam stability of the functional equation

متن کامل

Orthogonal stability of mixed type additive and cubic functional equations

In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$  is orthogonality in the sense of Ratz.

متن کامل

cubic-quartic functional equations in fuzzy normed spaces

in this paper, we investigate the generalizedhyers--ulam stability of the functional equation

متن کامل

Stability of a Mixed Type Additive, Quadratic and Cubic Functional Equation in Random Normed Spaces

In this paper, we obtain the general solution and the stability result for the following functional equation in random normed spaces (in the sense of Sherstnev) under arbitrary t-norms f(x + 3y) + f(x− 3y) = 9(f(x + y) + f(x− y))− 16f(x).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2009

ISSN: 1029-242X

DOI: 10.1155/2009/527462